

技術仕様

	1000 50105
Coarse Movement Range	
Xaxis	> 1000 µm
Yand Zaxes	500 - 1000 μm
Fine Movement Range	
Xaxis	2 - 3 µm
Yand Zaxes	~ 40 µm
Electrical Contacts	2 standard (3 – 7)*
Current Resolution	100 pA standard (< 10 pA)*
Sample Compatibility	3 mm half grids, FIB lift-out grids, or custom*
TEM Compatibility	TFS, JEOL, Hitachi

* Contact us for custom configurations

1800 Sarias

概要

当社のバイアスマニピュレータ・ホルダーは、その場サンプルマニピュレーションとサイト固有電気バイアスを実行する能力が証明された、唯一の信頼できるTEM用試料ホルダーです。このホルダーは、X、Y、Zの各軸独立動作が可能で、試料との点接触と、高解像度TEMによる撮像を容易に実現します。 使い勝手が良く、メンテナンスフリーな上、主要なTEMメーカー(日本電子、サーモフィッシャーサイエンティフィック、日立)各社に対応しています。

主な特徴:

- > 電気接点用可動プローブ
- ▶ プローブのX,Y,Z軸方向の粗動と微動を独立化
- ▶ プローブ交換が容易
- > 着脱可能な試料カートリッジ
- ▶ 直感的なグラフィカル・ユーザーインターフェース(GUI)

適用例:

- > 電池材料
- > ナノエレクトロニクス・デバイス
- > 太陽電池
- > 半導体

www.hummingbirdscientific.com ©Hummingbird Scientific 2023 -The specifications provided are subject to change without notice.

仕組み

試料の構造や化学的性質(HRTEM、電子回折、EELSなど)と、電気 的特性の関連付けを行います。

移動バイアスプローブを高空間分解能で操作し、電気接点を形成 します。

X軸、Y軸、Z軸の粗動と微動を独立制御します。粗動は蝶ネジで操作 し、微動は圧電素子で行います。制御には、付属のコントローラーと GUIを使用します。

同軸ケーブルで低ノイズの電気データを取得できます。

試料の準備には、標準的な3mmハーフグリッド試料、またはFIBリフト アウトグリッドを使用します。

電気接点の特性評価

電気バイアスコンタクトの構造と化学的評価を記録するためには、 TEMベースの特性評価技術を総動員することになります。 可動プローブと試料の接触部の開口面積が広いため、以下のような 用途に最適です。

- > 高分解能TEMイメージング
- > 高分解能STEMイメージング
- > 電子線回折
- > エネルギー分散型X線分光法(EDS)
- 電子エネルギー損失分光法(EELS)

可動バイアシングプローブと金属ベース試料の60nm幅のコンタクトのTEM像の例です。接触部の構造が、高い空間分解能で観察されています。

ソフトウェア

ハミングバード・サイエンティフィックのGUIは、直感的な微動操作 パネルが特徴です。プローブとサンプルの接触プロセスを容易にし、 迅速化することができます。微動方向と急峻なサイズを変更する機能 があり、軸の寄生運動(パラサイティックモーション)は、統合された 補正アルゴリズムで補正することができます。これにより、ユーザーは コンタクト・プロセスに煩わされることなく、実験に集中することが できます。また、電源電圧計を内蔵しており、電気計測、データ出力、 データ記録が可能です。

注目の研究

全固体電池のためのリチウム界面のその場TEMプロービング

北米トヨタ研究所とペンシルバニア大学の研究者らは、ハミング バード・サイエンティフィックのTEM用バイアスマニピュレータ・ ホルダーを用いて、空気に敏感なリチウム金属を新しい固体電解 質に接触させ、リチウムの充放電サイクルにおける劣化機構を観 察する実験を行いました。その結果、チオリン酸リチウム(LPS)電 解質との反応により、リチウム金属にデンドライト(樹枝状突起)と 剥離が発生することが確認されました。しかし、同じ電解質にヨ ウ化リチウムをドープすると、ドーパントが保護的な役割を果たし 、このような劣化を防ぐことができる事が確認されました。これに より、リチウムサイクル容量が向上します。

本ホルダーのその場プローブ操作とバイアス機能は、ナノ構造電 池材料の基礎的理解と微細構造の進化を加速し、より優れた電 池を開発することを可能にします。

参考文献 Singh et al. Chem. Mater. 2020, 32, 17, 7150-7158. DOI: 10.1021/acs.chemmater.9b05286

図: リチウム金属に対する固体LPS電解質のその場プロービングで、充放電サイクル中の リチウム樹枝状成長および剥離を示す。 画像著作権 © 2020 米国化学会

本ホルダーに関連した論文

Zeyang Zhang, Jean E. Calderon, Saisaban Fahad, Licheng Ju, Dennis-Xavier Antony, Yang Yang, Akihiro Kushima, and Lei Zhai. **"Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage,"** ACS Applied Materials & Interfaces (2021)

Jung Ho Yoon, Jiaming Zhang, Peng Lin, Navnidhi Upadhyay, Peng Yan, Yuzi Liu, Qiangfei Xia, J. Joshua Yang, **"A Low-Current and Analog Memristor with Ru as Mobile Species,"** *Advanced Materials* (2020)

Nikhilendra Singh, James P. Horwath, Patrick Bonnick, Koji Suto, Eric A. Stach, Tomoya Matsunaga, John Muldoon, and Timothy S. Arthur. "Role of Lithium Iodide Addition to Lithium Thiophosphate: Implications beyond Conductivity." *Chemistry of Materials* (2020)

Nikhilendra Singh, James Horwath, Timothy Arthur, Daan Hein Alsem, Eric Stach. **"Using Operando Electrochemical TEM as Part of a Correlative Approach to Characterize Failure Modes in Solid-State Energy Storage Devices."** *Microscopy & Microanalysis* (2020)

Eric Stach, James Horwath, Nikhilendra Singh, Timothy Arthur, Daan Hein Alsem, Norman Salmon. **"Understanding the Relationship Between Air Exposure, Electron Dose and Beam Damage in Solid Electrolyte Materials."** *Microscopy & Microanalysis* (2020)

最新情報については、 https://hummingbirdscientific.com/selected-publications-8/ をご覧ください。

Visit our Website